Pentelute Lab MIT | Convergent Diversity-Oriented Side-Chain Macrocyclization Scan for Unprotected Polypeptides
Here we describe a general synthetic platform for side-chain macrocyclization of an unprotected peptide library based on the SNAr reaction between cysteine thiolates and a new generation of highly reactive perfluoroaromatic small molecule linkers. This strategy enabled us to simultaneously "scan" two cysteine residues positioned from i, i + 1 to i, i + 14 sites in a polypeptide, producing 98 macrocyclic products from reactions of 14 peptides with 7 linkers. A complementary reverse strategy was developed; cysteine residues within the polypeptide were first modified with non-bridging perfluoroaryl moieties and then commercially available dithiol linkers were used for macrocyclization. The highly convergent, site-independent, and modular nature of these two strategies coupled with the unique chemoselectivity of a SNAr transformation allows for the rapid diversity-oriented synthesis of hybrid macrocyclic peptide libraries with varied chemical and structural complexities.
Pentelute Lab, MIT, Publications,
15747
portfolio_page-template-default,single,single-portfolio_page,postid-15747,ajax_fade,page_not_loaded,,paspartu_enabled,paspartu_on_top_fixed,paspartu_on_bottom_fixed,qode_grid_1200,qode_popup_menu_push_text_top,qode-theme-ver-16.2.1,qode-theme-bridge,disabled_footer_top,wpb-js-composer js-comp-ver-5.4.7,vc_responsive
 

Convergent Diversity-Oriented Side-Chain Macrocyclization Scan for Unprotected Polypeptides

Convergent Diversity-Oriented Side-Chain Macrocyclization Scan for Unprotected Polypeptides

Zou, Spokoyny, Zhang, Simon, Yu, Lin, Pentelute, Org. & Biomol. Chem., 2014, 12, 566-573.

Published

Online January 28, 2014

Abstract

Here we describe a general synthetic platform for side-chain macrocyclization of an unprotected peptide library based on the SNAr reaction between cysteine thiolates and a new generation of highly reactive perfluoroaromatic small molecule linkers. This strategy enabled us to simultaneously "scan" two cysteine residues positioned from i, i + 1 to i, i + 14 sites in a polypeptide, producing 98 macrocyclic products from reactions of 14 peptides with 7 linkers. A complementary reverse strategy was developed; cysteine residues within the polypeptide were first modified with non-bridging perfluoroaryl moieties and then commercially available dithiol linkers were used for macrocyclization. The highly convergent, site-independent, and modular nature of these two strategies coupled with the unique chemoselectivity of a SNAr transformation allows for the rapid diversity-oriented synthesis of hybrid macrocyclic peptide libraries with varied chemical and structural complexities.

Category
2014, Publications